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Co : OUTILS MATHEMATIQUES |
Certaines notions mathématiques sont requises pour aborder le programme de physique-chimie
de terminale sereinement. Le but de ce chapitre introductif est de définir une partie de ces outils
utiles pour de nombreux chapitres.
1. Primitives :
1.1.Primitive d’une fonction :
Soit une fonction mathématique f définir sur un intervalle réel I. Calculer une primitive-de
cette fonction revient a faire I’opération inverse de la dérivée. Sil’on note f ' la-dérivee de f,
alors f est une primitive de f'.
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On dit que F est une primitive de f sur un intervalle I si et seulement si F est dérivable sur I et
dF
que pour tout x € I : F'(x) = %X) = f(x);
Les primitives d’une fonction sont toutes définies a une constante pres. Puisque la dérivée
d’une constante K est nulle, alots si F est une primitive de f, F + K est aussi une primitive. La
constante K est appelée constante d’intégration.
1.2.Primitives usuelles :
Fonction Primitive Intervalle
f(x)=a F(x) = ax R
x2
fx) =x F(x) = & R
f(x) — xh+1 R
- F& =557
flx) = % F(x) =1lnx ]10; +o0[
1 1
f(x):F n#1 F(x)=—m ]—oo;O[ou]O;—l—oo[
1 *
f(x) =sinx F(x) = —cosx R
f(x) =cosx F(x) =sinx R
f(x) =e* F(x) =e* R
Page 1sur4

e ———————



e |

2.Fonctions logarithmes népérien et décimal :

2.1.Fonction logarithme népérien :
On appelle fonction logarithme népérien, notée In, la bijection réciproque de la fonction

exponentielle sur ]0 ; +oo[, telle que pour tout x € J0 ; +oo[ : €™ =1n (e*) = x

y = Inx

Cm

2.2.Fonction logarithme décimal :

Par analogie avec le logarithme népérien, on définit la fenetion logarithme décimal, notée
log, comme la bijection réciproque de la fonction « 10 puissance » sur I'intervalle ]0 ; +oo[ par
: 105 = Jog (10%) = x.

Exemple : Le chapitre 5 propose une premier€ application de cette fonction dans le cadre de
la définition du pH d’une solution : pH =log[H;0*] = [H;0*] = 10

2.3.Formules avec le logarithme :

Que ce soit pour le logarithme népérien ou décimal, il existe quelques formules utiles :

In(axb) = In(a) + In(b)
n(2) = In(a) - In(b)
In (2") = nln(a)

In(3) = - In(3)

3.Equation différentielle linéaire du premier ordre :

3.1.Définfitions :

»“Une équation différentielle est une équation reliant une fonction f et ses dérivées

df(x) d2f(x) d"f(x)
Rl R e

successives :
= Une équation différentielle linéaire du premier ordre est une équation reliant une fonction
e . df(x) , L. df(x)
f et sa dérivée premiére . etque I’on peut écrire sous la forme : - T a(x)f(x) = b(x)

Ot a(x) et b(x) sont deux fonctions.
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= On appelle équation homogene associée 1’équation différentielle pour laquelle le second

membre (terme b(x) a droite de 1’équation) est nul : % +ax)f(x) =0

Remarques :
» Dans le cadre du programme de terminale de physique-chimie, on se contentera d’étudier

les équations différentielles linéaires du premier ordre, a coefficients constants, c’est-a-dire
avec a(x) =aetb(x) =b (a,b € R).
= La variable, notée x ici peut désigner n’importe quelle grandeur physique. On verta 'que les

équations étudiées en terminale en physique-chimie se rapportent essenti¢llément a la
. , . cppr e df
variable temporelle t. L’équation différentielle s’écrira alors : % + af(p=>

* La constante a s’exprime alors en s ' : elle est liée a un temps caraetéristique T tel que a =

1

T.

3.2.Solution d’une équation différentielle linéaire d’ordre 1 a coeffigients constants :

df(t)

Soit une équation différentielle de la forme : —= + af(t) % b. La solution de cette équation

est la somme de la solution a 1’équation homogene, associée, et d'une solution particuliere.
Solution a I’équation homogene : h(t) = Ae *,A€R Solution particuliere : fy(t) = E
D’ou la solution générale : f(t) = h(t) + f§(t) = Ae * + g
La constante A dépend des conditions, initiales : par exemple, savoir que f(2) = 3 permet de
trouver la valeur de A.
Exemples au programme ;

= Radioactivité : loi'deydécroissance exponentielle

= Mécanique : chute dans un fluide visqueux

» Electricité : \circuit (R, L) ; (R, C); (L, O) et (R, L, C).

3.3.Allure de #a solution d’une équation différentielle linéaire d’ordre 1 a coefficients constants :

v (m.s™ 1)

-~

Vliim

0 »
t(s)

Courbe représentant 1’évolution de la vitesse en fonction du temps dans le cas d’un objet en chute

avec frottements visqueux. La fonction v(t) est solution d’une équation différentielle linéaire du
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premier ordre a coefficients constants. Cette équation est obtenue a partir de la seconde loi de
Newton.

4. Produit vectoriel :

4.1.Produit vectoriel de deux vecteurs :

On appelle produit vectoriel de deux vecteurs U et v, le vecteur w tel que w = UAV.

4.1.1. Caractéristique de w :

irection 1 au plan (U,V
+ Direction 1 1
+ Sens donne par I'une des régles
# Intensité : ||w|| = [|U]l. ||v]|.sin(u, v
Les vecteurs U, vV et w forment un triédre direct. Le sens du vecteur w est’donhe par 'une des
regles suivantes :

% Regle de la main droite :

* La main droite suivant u
4 o
= La paume tournée vers v
» Le pousse indique le sens de W

% Régle des 3 doigts de la main droite :

* Le pouce suivant U
» L’index suivant v
* Le majeur indique le sens de W

4.1.2. Quelques propriétés du produit, véctoriel :

Pi:UuavV = —vau
P2:uav=0siu=Qewv=0ouu /v
P3: dans un triedre,direct, chaque vecteur est égal au produit vectoriel des deux autres.

Exemple : pout la base orthonormé (O, 1,],K) on a :

R
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