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EXERCICE 1      25 points

La figure (1) ci-dessous représente une piste ABCD située dans un plan vertical :  

• la partie  (AB) est rectiligne de longueur l = 1 m et inclinée d’un angle α = 30° sur l’horizontale. 

• la partie  (BC) est un arc de cercle de centre O, de rayon r = l et telle que l’angle θC = (𝑂𝐵⃗⃗ ⃗⃗  ⃗; 𝑂𝐶⃗⃗⃗⃗  ⃗)= 10°. 

• la partie  (CD) est un arc de cercle de centre O’, de rayon r’= l. 
Les parties (BC) et (CD) sont tangentes en C.  

Sur la partie (AB), les forces de frottements sont équivalentes à une force 𝑓   parallèle à la piste et opposée à la 
vitesse d’intensité f constante.  
Les frottements sont négligeables sur les autres parties de la piste. L’action de l’air sera négligée et on prendra  
g = 10m.s-2. 
Un solide S ponctuel de masse m = 200 g part du point A sans vitesse initiale. Il reste sur la piste (ABCD) jusqu’ en 
D et la quitte à partir du point D. 
Première partie :  

1.1. Exprimer la vitesse VB du solide au point B en fonction de m, g l, f et α.  

1.2. Montrer que la vitesse V du solide au point M est donnée par la relation : 

V = √2gr [sinα + cosα − cos(α +  θ) −
f

mg
] . 

1.3.  Exprimer l’intensité R de la réaction de la piste sur le solide en fonction de m, g, α, 𝛳, r et V. En déduire que 

R peut se mettre sous la forme :    R = mg[3cos(α + θ) − 2(sinα + cosα)] + 2f. 

1.4. Trouver l’intensité f de la force de frottement sachant que la valeur l’intensité de la réaction en C est  

RC= 0,132 N. En déduire la valeur VC de la vitesse en C. 

Deuxième partie : 
Le raccordement est tel que le solide quitte la piste au point D situé au même niveau que C avec la vitesse  
VD= 2,65 m.s-1. 

2.1. Etablir, dans le repère (O’ 𝒊 ; 𝒋  ) indiqué sur la figure 1, les équations horaires x(t) et y(t) du mouvement de 
la sphère à partir du point D. 

2.2. Trouver l’équation cartésienne de la trajectoire du solide. 
2.3. Déterminer les coordonnées du point de chute E du solide au sol. 

2.4.  Le solide arrive au point E avec une vitesse  𝑉𝐸
⃗⃗⃗⃗ . Donner les caractéristiques de  𝑉𝐸

⃗⃗⃗⃗ .        
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EXERCICE 2  25 points 

Données : U0 = IUACI = 300 V ; masse de l’électron : me = 9,1.10-31 kg ; charge élémentaire : e = 1,6.10-19C. 

Des électrons, émis à la cathode C avec une vitesse 

négligeable sont accélérés sous une tension UAC dans le 

domaine (I). Ils traversent l’anode A et pénètrent dans 

un domaine (II) où règne un champ électrique uniforme 

𝐸⃗  où ils sont déviés vers la plaque P1. Les plaques P1 et P2 

ont chacune une longueur   = 10,3 cm et sont distantes 

de d = 4 cm. A la sortie au point S d’ordonnée Ys = 1,6 cm 

du domaine (II) où règne le champ électrique 𝐸⃗ , les 

électrons pénètrent dans le domaine (III) où règne un 

champ magnétique uniforme 𝐵⃗   où ils sont déviés vers la paque sensible P (figure 2). 

2.1. Déterminer le signe de la tension UAC et l’expression de la vitesse VA des électrons lorsqu’ils arrivent à l’anode A 

à l’instant de date t= 0. Calculer VA. 

2.2. Quel doit être le sens de 𝐸⃗   pour que les électrons soient déviés vers la plaque P1 ?  

2.3. Déterminer les équations horaires du mouvement des électrons soumis au champ électrique 𝐸⃗  dans le repère 

(A ; 𝑖 ; 𝑗  ). En déduire l’équation de la trajectoire et sa nature.  

2.4. Calculer la valeur de la tension U = UP1P2 aux bornes des plaques P1 et P2 puis exprimer la tension UAS en fonction 

de Ys , d et U. 

2.5. Montrer que la valeur VS de la vitesse  𝑉⃗ 𝑆 des électrons à la sortie, au point S peut se mettre sous la forme :  

VS = √
2e

me
(U0 + U𝑆𝐴) 

Calculer VS. En déduire la valeur de l’angle  entre la vitesse  𝑉⃗ 𝑆 à la sortie S et l’axe des abscisses. 

2.6. A leur sortie en S, les électrons entrent dans le domaine (III) où règne un champ magnétique 𝐵⃗  uniforme. 

2.6.1. Quel doit être le sens de 𝐵⃗   pour que les électrons soient déviés vers la plaque sensible P ? Justifier la réponse 

en représentant  𝐵⃗   dans le domaine où il existe, le vecteur vitesse  𝑉⃗ 𝑆  et la force magnétique  𝐹 𝑚  au point S. 

2.6.2. Montrer alors que le mouvement des électrons dans le domaine (III) est plan, circulaire et uniforme. 

Exprimer littéralement R = OS rayon de la trajectoire des électrons en fonction de Vs, B, de leur masse me et de 

leur charge q. 

2.6.3. Pour VS= 1,1.107 m.s-1, calculer le rayon R et en déduire la valeur du champ magnétique  𝐵⃗ .   

2.6.4. Dans le repère (A ; 𝑖 ; 𝑗  ), établir l’équation cartésienne de la trajectoire de l’électron dans le  

domaine (III). 

2.6.5. Les électrons rencontrent la plaque P au point F. Trouver les coordonnées du point F dans le repère  

(A ; 𝑖 ; 𝑗  ). 

 

EXERCICE 3 15 points 

Perméabilité magnétique du vide : µ0 = 4.10-7 S.I.  

On considère un solénoïde de longueur l = 60 cm de résistance R = 4 , comprend N = 2000 spires. 

3.1. Dans un premier temps, les extrémités du solénoïde sont branchées aux bornes d’un générateur G0 de 

f.e.m E0 = 24 V et de résistance interne r = 2 . 

3.1.1. Calculer l’intensité du courant dans le circuit. 

3.1.2. Faire un schéma du solénoïde et y indiquer clairement le sens du courant et le vecteur champ 

magnétique à l’intérieur. Préciser les caractéristiques du vecteur champ magnétique à l’intérieur du 

solénoïde. 

3.1.3. -On introduit à l’intérieur du solénoïde une bobine plate d’aire s = 5 cm2 (par spire) comportant 

n = 50 spires. L’axe du solénoïde est orthogonal au plan de la bobine.  
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Calculer le flux d’induction magnétique à travers la bobine et l’inductance L de la bobine 

3.2. On remplace le générateur G0 par un autre générateur G qui débite dans le solénoïde un courant 

d’intensité i périodique comme l’indique la figure 3.  

On relie ensuite les extrémités de la bobine intérieure à un oscillographe.  
3.2.1. Expliquer pourquoi la bobine est le siège d’un phénomène d’induction. Déterminer la f.e.m d’induction 

pour 𝑡 𝜖 [0 ; 0,5 𝑚𝑠] 𝑒𝑡  𝑡 𝜖 [0,5 𝑚𝑠 ; 1,5 𝑚𝑠]. 

3.2.2. Représenter, pour 𝑡 𝜖 [0; 3,5 𝑚𝑠], la tension observée sur l’écran de l’oscillographe. 

La base des temps est sur la graduation 0,5 ms. cm-1. La sensibilité verticale est sur la graduation  

0,25 V. cm-1. 
3.3. Cette fois-ci on considère une bobine plate formée de n’ = 500 spires. Chaque spire a une surface  

s’ = 100 cm2. La bobine tourne à vitesse angulaire constante  autour d’un axe () diamétral et vertical 

dans un champ magnétique uniforme horizontal de vecteur 𝐵⃗ . 

Des contacts électriques mobiles permettent de relier les extrémités A et C du conducteur respectivement 

à l’entrée Y et à la masse M d’un oscillographe (figure 4). Le balayage horizontal étant réglé sur 10 ms.div-

1 et la sensibilité verticale sur 1V.div-1, on observe la courbe de la figure 5 sur l’oscillographe. 

3.3.1. Justifier qualitativement l’existence d’une tension entre A et C lors de la rotation de la bobine. 

3.3.2. Montrer que la bobine est siège d’une f.e.m induite donnée par l’expression :  

e = emax.sin (t + 0) où emax et 0 sont des constantes (emax >0). Exprimer emax en fonction de , n’, s’ et 

B.  

3.3.3. En déduire l’expression de la tension uAC. 

3.3.4. Déterminer alors, en utilisant l’oscillogramme de la figure 5, la vitesse angulaire  de la bobine 

ainsi que l’intensité B du champ magnétique 𝐵⃗ .      

 

 
 

EXERCICE 4 15 points  
Un circuit est composé d’un condensateur de capacité C = 0,25.10–6 F, d’un 

résistor de résistance R = 2000  , d’une bobine pure d’inductance L = 1 H et 

d’un générateur qui fournit une tension sinusoïdale u (t), de pulsation 𝝎. 

4.1. Etablir l’équation donnant u (t) en fonction de i (t), 
dt

di(t)
 et q (t) où q (t) est 

la charge de l’armature liée à la bobine. 

4.2. On pose i (t) = Im cos(𝝎t) et u = Um cos (𝝎t + ). A partir de la construction 

de FRESNEL trouver l’expression de l’intensité efficace I en fonction de la tension efficace U et des caractéristiques 

du circuit.  
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4.3. Montrer que l’intensité efficace I prend la valeur maximal I0 = 
R

U
 pour une valeur 𝝎0 de 𝝎 que l’on 

exprimera. 

4.4. On pose  𝒙 =
𝛚

𝛚𝟎
  et 𝑸 =

𝑳𝝎𝟎

𝑹
=

𝟏

𝑹𝑪𝝎𝟎
 

4.4.1. Montrer que   
𝑰

𝑰𝟎
= 𝑭(𝒙) =

𝟏

√𝟏+𝑸𝟐(𝒙−
𝟏

𝒙
)𝟐

 

4.4.2. On fait varier la pulsation 𝝎 et on détermine les couples de valeurs [x ; F(x)] ; ce qui à permis de 

tracer le graphe de la figure 6: 

4.4.2.1  x1 et x2 étant les racines positives des équations {
𝐱𝟐 +

𝐱

𝐐
− 𝟏 = 𝟎

𝐱𝟐 −
𝐱

𝐐
− 𝟏 = 𝟎

   

Montrer que 𝒙𝟐 − 𝒙𝟏 =
𝟏

𝑸
 puis  𝟐 − 𝟏  = 

o

Q
 .        

4.4.2.2  On appelle bande passante pour I, le segment [𝒙𝟏 ;  𝒙𝟐] ou [𝟏;  𝟐] tel que 𝐹(𝒙𝟏) =  𝐹(𝒙𝟐) =  
𝟏

√𝟐
.   

Déterminer graphiquement la bande passante et en déduire la valeur du facteur de qualité Q.    

 4.4.2.3 : Faire l’application numérique du facteur de qualité défini en 4-4 et comparer les deux valeurs de Q.  

 

EXERCICE 5     20 points 
Il existe deux principaux isotopes stables du chlore (dont les nombres de masse sont 35 et 37) trouvés dans les 
proportions respectives de 3 pour 1 et qui donnent aux atomes en vrac une masse molaire atomique apparente de 
35,5 g.mol-1.   
Le chlore a 9 isotopes avec des nombres de masse s’étendant de 32 à 40. Seulement trois de ces isotopes existent à 

l’état naturel : le 𝐶𝑙35  stable (75,77 %), le 𝐶𝑙37  stable (24,23 %) et le 𝐶𝑙36  radioactif.  

Le rapport du nombre de noyaux de 𝐶𝑙36  au nombre total de noyaux de Cl présents dans l’environnement est de 

7,0×10 –13 actuellement.  

Le « chlore 36 » ( 𝐶𝑙36 ) se désintègre essentiellement en « argon 36 » ( 𝐴𝑟36 ). La demi-vie du 𝐶𝑙 36 est de 301×103 ans. 

Cette valeur le rend approprié pour dater géologiquement les eaux souterraines sur une durée de soixante mille à 
un million d’années.    
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Données :  

- 1 an = 3,156×107 s. 
- Célérité de la lumière dans le vide : c = 3×108 m.s-1   
- Masse molaire atomique du chlore : M(Cl) = 35,5 g.mol-1   
- Constante d’Avogadro : NA = 6,022×1023 mol-1   
- Masse et numéro atomique de quelques particules et noyaux :  

 

 

  

 

5.1. Définir le terme « isotopes ».   

5.2. Donner le symbole complet du noyau de « chlore 36 » et sa composition. 

5.3. Qu’appelle-t-on l’énergie de liaison EL d’un noyau ? Calculer, en MeV, l’énergie de liaison EL d’un noyau de  
« chlore 36 ».    

5.4. Le texte évoque la réaction de désintégration d’un noyau de « chlore 36 ». Écrire l’équation de cette réaction, 
en indiquant le type de radioactivité mise en jeu et les lois utilisées.   

5.5. Donner la définition du temps de « demi-vie » t1/2 d’un noyau. Etablir la relation entre le temps de demi-vie t1/2 

et la constante radioactive λ. Calculer la constante radioactive de l’isotope de « chlore 36 ».   

5.6. Une bouteille contient un volume V= 1,5 L d’eau minérale. Sa teneur en ions chlorure est indiquée sur 
l’étiquette et vaut Cm = 13,5 mg.L- 1.   
5.6.1. Déterminer la quantité de matière d’ions chlorure contenue dans l’eau de cette bouteille.  
5.6.2. On suppose que le rapport du nombre de noyaux de « chlore 36 » au nombre total de noyaux de chlore 
présents dans cette eau minérale est celui donné dans l’énoncé. Calculer le nombre N de noyaux de « chlore 36 » 
présents dans cette bouteille. 
5.6.3.  Montrer que la relation entre l’activité A d’un échantillon et le nombre moyen de noyaux N présent dans cet 
échantillon, à une date t donnée est : A = λ.N. En déduire la valeur de l’activité en « chlore 36 » de l’eau que contient 
cette bouteille pour Cm = 13,5 mg.L- 1 .   
5.6.4. En déduire la valeur du nombre de désintégrations de noyaux de « chlore 36 » par jour.   

5.7. L’étude des isotopes radioactifs apporte des informations concernant la durée du transit souterrain d’une eau 
c'est-à dire l’âge de la nappe phréatique. Les ions chlorure Cl- sont presque toujours présents dans les eaux 
minérales naturelles et ne sont que rarement impliqués dans les interactions eaux - rochers. Dans les eaux de 
surface, le « chlore 36 » est renouvelé et la teneur en « chlore 36 » peut être supposée constante, ce qui n’est pas le 
cas dans les eaux souterraines des nappes phréatiques. Le « chlore 36 », de demi vie 3,01×105 ans, est donc un 
traceur particulièrement à l’étude des eaux souterraines. Pour dater des eaux, on peut utiliser le « carbone 14 », de 

demi-vie 5,73×103 ans, présent dans les ions carbonate 𝐶𝑂3
2− dissous par exemple.  

5.7.1. Entre le « carbone 14 » et le  « chlore 36 », l’un est adapté pour la datation d’une eau souterraine ancienne et 
l’autre à une eau souterraine plus récente. Attribuer à chaque isotope le type d’eau pour lequel il est adapté en 
justifiant la réponse. 
5.7.2. On considère un échantillon, de volume V donné, d’eau issue d’une nappe phréatique.   
On note :   

- N0 le nombre moyen de noyaux de « chlore 36 » présents dans cet échantillon à l’instant de date t0 = 0 s de 
la constitution de la nappe.   

- N(t) le nombre moyen de noyaux de « chlore 36 » dans l’eau extraite aujourd’hui de cette nappe et donc non 
renouvelée en « chlore 36 ».   

On admet que N0 est égal au nombre moyen de noyaux de «chlore 36 » présents dans un échantillon de même 
volume V d’eau de surface.  
Trouver l’âge d’une nappe phréatique dont l’eau non renouvelée ne contient plus que 38 % du nombre de noyaux 
de « chlore 36 » trouvée dans les eaux de surface.   
 

FIN DE L’EPREUVE 

Particule ou noyau Proton Neutron Le « chlore 36» « Argon 36 » 
Masse en 10-27 kg 1,67262 1,67492 59,71128 xxxxxxxxxxxx 
Numéro atomique Z 1 0 17 18 


